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Abstract. Interval type-2 fuzzy linear programming models, which are
extensions of type-2 fuzzy linear programming models, have been exten-
sively considered and used in recent years, and numerous studies have been
conducted to solve this type of problem. However, so far, not many studies
have been conducted on the fuzzy linear programming problem with vague-
ness in the parameters with interval type-2 membership functions, and this
is a necessity for conducting this research. In these types of problems, the
input data are modeled using fuzzy preference-based membership func-
tions. This study investigates interval type-2 fuzzy linear programming
problems with vagueness parameters. In addition, we present the mem-
bership functions associated with each model and propose new modeling
techniques. Depending on the position of vagueness in the problem, such
as vagueness in the objective function vector, technological coefficients, re-
sources vector, and any possible combination of them, various problems
arise. Therefore, we introduce these types of problems, provide member-
ship functions, and propose different solution methods. We evaluate the
efficiency and performance of each of the proposed methods using an ex-
ample.
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1. Introduction

Given that real-world data are often imprecision, employing fuzzy linear pro-
gramming (FLP) problems is regarded as an ideal modeling technique. Zadeh [1]
was the first to introduce fuzzy sets (FSs). As an extension of type-1 fuzzy sets
(T1FSs), he introduced type-2 fuzzy sets (T2FSs) (See [2, 3, 4]). The latter one
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features degrees of fuzzy memberships that outperformed at decreasing the uncer-
tainty impact and modeling problems. Many researchers have studied and intro-
duced several methods for solving different types of FLP problems. One of the first
studies was conducted by Tanaka et al. [5]. They considered the Bellman-Zadeh’s
decision-making principle (the max-min operator) [6]. To acquire further scholarly
investigations and examinations that have been conducted recently regarding FLP
models, the following can be mentioned: Karmakar et al. proposed type-2 intuition-
istic fuzzy matrix games based on a new distance measure in a practical problem [7].
Also in [8], they proposed a novel and applicable defuzzification approach of type-2
fuzzy variables to solve matrix games. El Alaoui presented a fully FLP approach in
which all parameters are represented by unrestricted interval type 2 fuzzy numbers
(IT2FN) and variables [9]. Javanmard et al. introduced a method for solving the
FLP problem with IT2FNs [10].

Fuzzy mathematical programming is classified into different categories according
to how it models the fuzzy parameters and numbers in the problem. One of the
most important categories in the fuzzy medium was presented by Lai and Hwang
[11], who divided the problems into two categories: FLP problems and linear pro-
gramming (LP) problems with fuzzy parameters. In the first category, the input
data are modeled using fuzzy preference-based membership functions (MFs), and
in the second category, they are modeled on the basis of possibility distributions,
which are called flexible and possibilistic LP problems. This study reviews the mod-
eling of vagueness data using MFs, i.e., flexible LP problems. Figueroa enhanced
the Zimmerman’s method [12] based on MFs to solve interval type-2 fuzzy linear
programming (IT2FLP) problems with the resources vector (RsV) [13]. In addi-
tion, he introduced different methods for solving different problems that may arise
because of the position of vagueness in a problem. Sargolzaei and Mishmast Nehi
proposed three methods to solve the IT2FLP problem with vagueness in the RsV [14].
Furthermore, they proposed several methods to solve the multi-objective IT2FLP
problems with vagueness in coefficients [15]. Also they proposed an algorithm for
multi-objective IT2FLP problems with ambiguous parameters [16]. Golpayegani
and Mishmastnehi proposed a new technique for solving IT2FLP problems [17]. To
represent the uncertainty in the degree of compliance between the constraints and
the objective function, this method also employed MFs. According to the position
of the vagueness in the problem, there are different modes of interval type-2 fuzzy
linear programming problems. That is, an IT2FLP problem with vagueness in the
OFV, TCs, RsV, and any possible combination of them.

Few studies have been conducted on the IT2FLP problem with vagueness coef-
ficients. In this study, we propose new methods to solve these problems. As an
innovation, some ideas were used in this study, such as Gasimove and Yenilmez’s
method for solving the FLP problem with vagueness in technological coefficients
(TCs) [18], two methods based on the idea presented by Chandra and Aggarwal in
solving the FLP problems with vagueness in the objective function vector (OFV)
and RsV [19], and a method based on Farhadinia’s idea in solving the FLP problems
with vagueness in the RsV and TCs [20]. New methods were proposed for solving
flexible IT2FLP problems. As mentioned above, various problems were raised be-
cause of vagueness in the problem, such as vagueness in the OFV, TCs, RsVs, and
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any combination of these, all of which, except the IT2FLP problem with vagueness
in the RsV (See [14]), will be reviewed. The novelty and need for this study arises
from the fact that most studies conducted thus far have primarily focused on FLP
problems with vagueness parameters. However, there is a significant lack of research
on IT2FLP problems with vagueness parameters. In short, the main advantages and
benefits of this study can be described as follows:

• Lack of sufficient studies regarding IT2FLP problems with the vagueness in
the parameters;
• Using the ideas used to solve FLP problems with vagueness and expanding

them to solve IT2FLP problems with the vagueness in the parameters;
• The proposed methods have simple solution steps and no computational

complexity;
• Since the Bellman-Zadeh operator is used to find a crisp solution to the

IT2FL problem, our proposed methods are flexible and interpretable. Hence,
they are appropriate for numerous similar problems.
• One of the advantages of most of our proposed methods is that for differ-

ent values of α ∈ [0, 1], the corresponding values for the optimal objective
function and optimal solutions are obtained. Therefore, the decision-maker
(DM) can choose one of the optimal solutions according to the real condi-
tions of the problem and what he/she is considering.

The objective function of maximization and the constraints are considered to be
less than or equal to in this study. In addition, It should be noted that, the TCs and
values of the OFV can also have negative values. Also, we consider the TCs with
triangular MFs. The structure of this study is as follows:

First, the preliminary and basic concepts are introduced in Section 2. In the
Section 3, the IT2FLP problem with vagueness in the OFV is expressed, and a
novel technique is presented to solve it. In the Section 4, the IT2FLP problem with
vagueness in the TCs is introduced, and two new methods are presented to solve
it. In the Section 5, the IT2FLP problem with vagueness in the OFV and RsV is
stated, and two new solutions are proposed. The Section 6 presents the IT2FLP
problem with vagueness in the TCs and RsV and proposed a new method to solve
it. The Section 7 introduced the IT2FLP problem with vagueness in the OFV, TCs,
and RsV and proposed a new method to solve it. Then, for a better understanding
of the proposed method(s), examples are presented at the end of each section, and
comparisons are provided if required. Finally, the Section 8 includes the conclusion,
which states several limitations and potential future work. In the Table 1, you will
find a list of the symbols used in this study.

2. Preliminaries

The interval linear programming (ILP) problem and basic T2FS terminologies
are introduced in this section.

2.1. The IT2FSs. A T2FS gathers an unbounded quantity of FSs and is distin-
guished by two MFs. In this subsection, we introduce significant and indispensable
explanations associated with interval type-2 fuzzy sets (IT2Fs). Please consult [21]
and [22] for further details.
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Table 1. Reference of the symbols used in this article

Symbols Description

T2FS ˜̃a
Upper membership function (UMF) a
Lower membership function (LMF) a

Left MF a∨

Right MF a∧

Interval number a±

Definition 2.1. ˜̃A is the T2FS and definition as follows:

˜̃A =
∫
x∈X

∫
u∈Jx fx(u)/(x, u)

=
∫
x∈X

[∫
u∈Jx fx(u)/u

]/
x,

where
∫ ∫

denotes union over all admissible x and u, Jx ⊆ [0, 1] is the primary
membership of x, x ∈ X, u ∈ [0, 1], and fx(u) ∈ [0, 1] and is the secondary grade.

Definition 2.2. ˜̃A is an IT2FS and we described it as:

(2.1) ˜̃A =

∫
x∈X

∫
u∈Jx

1/(x, u) =

∫
x∈X

[∫
u∈Jx

1/u

]/
x.

The subsequent explanation enables us to depict a T2FS visually in two dimen-
sions as opposed to three dimensions. Figure 1 showcases an illustrative depiction
of IT2FS.

Figure 1. The IT2FS and its α-cut.
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Definition 2.3. The footprint of uncertainty (FOU), which we refer to as the

bounded area of uncertainty, is present in the initial memberships of a T2FS ˜̃A.
It consists of all initial memberships combined, i.e.

FOU( ˜̃A) =
⋃
x∈X

Jx.

A distinction can be observed between the T1FS and T2FS in terms of the FOU of
a T2FS that receives an infinite number of T1FSs.

Definition 2.4. An IT2FS’s α-cut is

α˜̃aij
=
{(

˜̃aij , u
)∣∣ J˜̃aij

≥ α, u ∈ [0, 1]
}
.

It is displayed in the following two parts

(2.2) αµ̄˜̃aij
=
{(

˜̃aij , u
)∣∣µ˜̃aij

≥ α
}

and

(2.3) αµ˜̃aij

=
{(

˜̃aij , u
)∣∣µ˜̃aij

≥ α
}
.

where UMF ˜̃aij corresponding α ∈ [0, 1] is represented by relation (2.2) and its LMF
is represented by relation (2.3).

The decomposition of any T2FS can be achieved by utilizing α-cuts, which are
facilitated by the employment of µ˜̃aij

and µ˜̃aij
.

Definition 2.5. The IT2FS is considered to be characterized by known UMF and
LMF. Establish αI ˜̃a∨ij

and αI ˜̃a∧ij
as the left and right interval-valued bound of relation

(2.1). In addition, the boundaries of α˜̃aij
are defined in the following:

αI ˜̃a
∨
ij

=

[
inf
˜̃aij

αµ̄˜̃aij
(˜̃aij , u); inf

˜̃aij

α˜̃aij
(˜̃aij , u)

]
=

[
α˜̃a

∨
ij

, α˜̃a
∨
ij

]
,

αI ˜̃a
∧
ij

=

[
sup
˜̃aij

αµ˜̃aij

(˜̃aij , u); sup
˜̃aij

αµ̄˜̃aij
(˜̃aij , u)

]
=

[
α˜̃a

∧
ij
, α˜̃a

∧
ij

]
.

2.2. The ILP problem. Here, we investigate the ILP problem and demonstrate
two theorems regarding the determination of values for the optimal objective func-
tion of the ILP, [23].

Definition 2.6 ([24]). ILP problems are described as:

(2.4)

max z =
∑n
j=1 c±j xj

s.t.
∑n
j=1 a

±
ijxj ≤ b±i , i = 1, 2, ...,m,

xj ≥ 0 j = 1, 2, · · · , n.

ILP problems have been addressed using various strategies. Several methods have
been introduced to solve the ILP problem in the [24],[25],[26],[27], and [28]. The best-
worst case (BWC) method is one of the fundamental techniques [29]. By expressing
two sub-models as the worst and the best sub-models, the BWC method is used to
solve ILP problem (2.4). The best and worst values of the optimal objective function
of the ILP problem can be found by applying the following theorems:
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Theorem 2.7 ([23]). The optimal values of the objective function of the ILP problem
(2.4) can be determined by solving two separate problems, each yielding the best and
worst sub-problems.

max z+ =
∑n
j=1 c+

j xj
s.t.

∑n
j=1 a

−
ijxj ≤ b+

i , i = 1, 2, · · · ,m,
xj ≥ 0 j = 1, 2, · · · , n,

and
max z− =

∑n
j=1 c−j xj

s.t.
∑n
j=1 a

+
ijxj ≤ b−i , i = 1, 2, · · · ,m,

xj ≥ 0 j = 1, 2, · · · , n.

Theorem 2.8 ([23]). The range of the objective function values in the BWC method
encompasses the value of the objective function in any arbitrary characteristic model
of ILP problem (2.4).

In the following sections, we presented the IT2FLP problems with vagueness in
the coefficients, OFV, any combination. First, we provide the MF for each one, and
then we proposed new method(s) to solve each one.

3. The IT2FLP problem with vagueness in OFV

In this specific section, the MF of the OFV is initially articulated, followed by the
introduction of a novel methodology aimed at resolving the IT2FLP problem when
confronted with vagueness in the OFV. The ˜̃cj , j = 1, 2, · · · , n, are the IT2FSs,
which are defined by the UMF, µ̄˜̃cj

, and LMF, µ˜̃cj
(see the Figure 2).

Figure 2. The MF of the interval type-2 OFV.
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Since the objective function is a maximization, thus the UMF is equal to:

µ̄˜̃cj
(cj ; c̄

∨
j , c̄
∧
j ) =


1, cj ≥ c̄∧j ,
cj−c̄∨j
c̄∧j −c̄∨j

, c̄∨j ≤ cj ≤ c̄∧j ,
0, cj ≤ c̄∨j ,

and its LMF is expressed as below:

µ˜̃cj
(cj ; c

∨
j , c
∧
j ) =


1, cj ≥ c∧j ,
cj−c∨j
c∧j −c∨j

, c∨j ≤ cj ≤ c∧j ,
0, cj ≤ c∨j .

3.1. The new solving method. Here, we introduce a method for solving the
IT2FLP problem with vagueness in the OFV. The IT2FLP problem with vagueness
in the OFV is considered, which is a dual-mode IT2FLP problem with vagueness in
the RsV, [14].

(3.1)

max
n∑
j=1

˜̃cjxj

s.t.
n∑
j=1

aijxj ≤ bi, i = 1, 2, · · · ,m,

xj ≥ 0, j = 1, 2, · · · , n,

which ˜̃cj , j = 1, · · · , n, are interval type-2 fuzzy OFVs. As shown, by applying

the α-cut, the interval

[
αµ̄˜̃cj

, αµ˜̃cj

]
is obtained. Considering Figure 2, we have[

αµ̄˜̃cj
, αµ˜̃cj

]
=
[
cj−c̄∨j
c̄∧j −c̄∨j

,
cj−c∨j
cj

∧−c∨j

]
. Now, the problem (3.1) is rewritten as follows:

(3.2)

max
n∑
j=1

[
cj−c̄∨j
c̄∧j −c̄∨j

,
cj−c∨j
c∧j −c∨j

]
xj

s.t.
∑
j=1

aijxj ≤ bi, i = 1, 2, · · · ,m,

xj ≥ 0, α ∈ [0, 1] , j = 1, 2, · · · , n,

which (3.2) is equivalent to

(3.3)

max
n∑
j=1

[c̄∨i + α(c̄∧i − c̄∨i ), c∨i + α(c∧i − c∨i )]xj

s.t.
n∑
j=1

aijxj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, α ∈ [0, 1] , j = 1, · · · , n,

since the objective function is maximization, the optimal solution for the problem
(3.3), given the interval programming, is as follows:

(3.4)

max
n∑
j=1

(c∨i + α(c∧i − c∨i ))xj

s.t.
∑
j=1

aijxj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, α ∈ [0, 1] , j = 1, · · · , n.
7
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The problem (3.4) is a nonlinear that is solved for different values of α ∈ [0, 1]. In
this method, in addition to α values, the optimal value of the objective function and
optimal solutions are also calculated, which is one of the advantages of this method.
Therefore, for different values of α ∈ [0, 1], a table of optimal solutions and the
optimal value of the objective function corresponding to each α value are obtained,
and the DM can choose a value from among the obtained solutions.

Example 3.1. Consider the following data for IT2FLP problem with vagueness

in the OFV: c∨ =

 5
10
2

 , c∧ =

 14
20
12

 , c̄∨ =

 8
13
5

 , c̄∧ =

 15
22
13

 , A =
5 3 7
10 4 9
4 6 3
2 7 7
5 6 11

 , b =


66
92
60
85

68.5

 .
According to these data and the problem (3.4), the non-LP problem is expressed as
follows:

(3.5)

max (8 + 7α)x1 + (13 + 9α)x2 + (5 + 8α)x3

s.t. 5x1 + 3x2 + 7x3 ≤ 66,
10x1 + 4x2 + 9x3 ≤ 92,
4x1 + 6x2 + 3x3 ≤ 60,
2x1 + 7x2 + 7x3 ≤ 85,
5x1 + 6x2 + 11x3 ≤ 68.5,
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3.

Since the problem (3.5) is nonlinear, we solve that for different values of α ∈ [0, 1].
From Table 2, we can see for α = 1, the maximum value of the optimal objective

Table 2. Solution of the problem (3.5)

α ∈ [0, 1] x∗1 x∗2 x∗3 z∗

0 0 10.0000 0 130.0000
0.1 0 10.0000 0 139.0000
0.2 0 10.0000 0 148.0000
0.3 0 10.0000 0 157.0000
0.4 0 10.0000 0 166.0000
0.5 0 9.4687 1.0625 175.2656
0.6 0 9.4687 1.0625 184.6375
0.7 0 9.4687 1.0625 194.0094
0.8 0 9.4687 1.0625 203.3812
0.9 6.9000 5.3000 0.2000 212.9400
1 6.9000 5.3000 0.2000 222.7000

function is obtained as z∗ = 222.7000 and the best optimal solution is (x∗1, x
∗
2, x
∗
3) =

(6.9, 5.3, 0.2). As mentioned above, according to the real conditions of the problem,
the DM can choose a value from among the solutions obtained in Table 1.

8
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4. The IT2FLP problem with vagueness in the TCs

In this section, we review the MFs of interval type-2 fuzzy TCs and propose a
method to solve such problems. In this study, the MFs of the TCs have a triangular
shape. The main structure of an IT2FLP problem with vagueness in the TCs is as
follows:

(4.1)

max
n∑
j=1

cjxj

s.t.
n∑
j=1

˜̃aijxj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

where (for i = 1, 2, · · · ,m and j = 1, 2, · · · , n), cj , xj ∈ Rn , bi ∈ Rm, and ˜̃aij ∈
Rm×n are the IT2FSs. We examine the MF of interval type-2 fuzzy TCs with
imprecision of the vagueness type. The MF representing this FS is shown in the
Definition 2.5 (See Figure 1). Then for each α-cut of two ILP problems,

(4.2)

αz1 : max
n∑
j=1

cjxj

s.t.
n∑
j=1

[
α¯̃̃a∨ij

, α˜̃a
∨
ij

]
xj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

and

(4.3)

αz2 : max
n∑
j=1

cjxj

s.t.
n∑
j=1

[
α˜̃a

∧
ij
, α¯̃̃a∧ij

]
xj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

to solve the programming problems (4.2) and (4.3), the best and worst objective
function values are displayed with α

b zi and α
wzi , respectively, where i = 1, 2.

(4.4)

α
b z1 : max

n∑
j=1

cjxj

s.t.
n∑
j=1

α¯̃̃a∨ij
xj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

and

(4.5)

α
wz1 : max

n∑
j=1

cjxj

s.t.
n∑
j=1

α˜̃a
∨
ij
xj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,
9
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and

(4.6)

α
b z2 : max

n∑
j=1

cjxj

s.t.
n∑
j=1

α˜̃a
∧
ij
xj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

and

(4.7)

α
wz2 : max

n∑
j=1

cjxj

s.t.
n∑
j=1

α¯̃̃a∧ij
xj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n.

Theorem 4.1 ([30]). Consider the interval inequalities
n∑
j=1

[
α¯̃̃a∨ij

, α˜̃a
∨
ij

]
xj ≤ bi and

n∑
j=1

[
α˜̃a

∧
ij
, α¯̃̃a∧ij

]
xj ≤ bi. The biggest and smallest feasible regions are equal to

n∑
j=1

α¯̃̃a∨ij
xj ≤

bi and
n∑
j=1

α¯̃̃a∧ij
xj ≤ bi, respectively.

Theorem 4.2 ([30]). For each α-cut, the UMF of the objective function is obtained
by solving (4.4) and (4.7).

Given the theorems 4.1 and 4.2, the best solution is obtained by solving the
problem (4.4).

Next, we propose two new approaches for solving the IT2FLP problem with vague-
ness in the TCs.

4.1. The first new method. In this subsection, a new solution method is suggested
based on Gasimov’s idea for solving the IT2FLP problem with vagueness in the TCs
[18]. Consider the IT2FLP problem with vagueness in the TCs (problem (4.1)). As

shown in Figure 1, four modes (ā∨ij , ā
∧
ij , a

∨
ij , a

∧
ij) exist for ˜̃aij , which a FLP problem

exists for each. Therefore, as these four problems are solved, four values are obtained
for the fuzzy objective function, i.e., (z̄∨ij , z̄

∧
ij , z

∨
ij , z

∧
ij). Because the problem (4.1) is

an asymmetrical problem, we try to make it symmetrical. Therefore, it is assumed
that

zb = max{z̄∨ij , z̄∧ij , z∨ij , z∧ij},
zw = min{z̄∨ij , z̄∧ij , z∨ij , z∧ij},

as a result, the MF of the fuzzy objective function is expressed as follows:

(4.8) µ ˜̃Cj
(x) =



1,
n∑
j=1

cjxj > zb,

n∑
j=1

cjxj−zw

zb−zw , zw ≤
n∑
j=1

cjxj ≤ zb,

0,
n∑
j=1

cjxj <zw.

10
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In addition, for i = 1, 2, · · · ,m, the MF of fuzzy constraints is defined as below:

(4.9) µ ˜̃Gi
(x) =



1, bi >
n∑
j=1

(aij + ∆ij)xj ,

bi−
n∑

j=1
aijxj

n∑
j=1

∆ijxj

,
n∑
j=1

aijxj ≤ bi ≤
n∑
j=1

(aij + ∆ij)xj ,

0, bi <
n∑
j=1

aijxj .

Regarding the max-min operator [6], we have

(4.10)

max α
s.t. µ ˜̃Cj

(x) ≥ α, i = 1, · · · , n,
µ ˜̃Gi

(x) ≥ α,
α ∈ [0, 1] , x ≥ 0.

The problem (4.10) is rewritten on the basis of two defined MFs for the fuzzy ob-
jective (4.8) and fuzzy constraints (4.9) as follows:

(4.11)

max α

s.t. α(zb − zw)−
n∑
j=1

cjxj + zw ≤ 0,

n∑
j=1

(aij + ∆ijα)xj − bi ≤ 0, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n.

From now on, two modes can be considered. First, only the UMF is taken and the
problem is solved on the basis of it. Then, the LMF is considered and the problem
is solved. Thus, an interval is obtained for the α value, from which the mean α for
obtaining a specified amount for α∗ is obtained. Second, the mean of the left upper
and lower MFs and the mean of the right upper and lower MFs are calculated and
an α∗ value is obtained. Then, the two proposed modes are studied in detail.
Mode 1: For the UMF, consider the intervals ˜̃aij ∈

[
a∧ij , ā

∧
ij

]
and ∆ij ∈

[
∆ij , ∆̄ij

]
.

Then the problem (4.11) is displayed as an interval non-LP problem:

max α

s.t. α(zb − zw)−
n∑
j=1

cjxj + zw ≤ 0,

n∑
j=1

(
[
a∧ij , ā

∧
ij

]
+
[
∆ij , ∆̄ij

]
α)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,
11
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which, given interval programming, the best problem is expressed as follows:

(4.12)

max α

s.t. α(zb − zw)−
n∑
j=1

cjxj + zw ≤ 0,

n∑
j=1

(a∧ij + ∆ijα)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n.

The problem (4.12) is a nonlinear. Thus, it for α ∈ [0, 1] for solving the IT2FLP
problem with vagueness in the TCs should be solved. Also, for the LMF, consider
the intervals ˜̃aij ∈

[
ā∨ij , a

∨
ij

]
and ∆ij ∈

[
∆ij , ∆̄ij

]
, we have

(4.13)

max α

s.t. α(zb − zw)−
n∑
j=1

cjxj + zw ≤ 0,

n∑
j=1

(ā∨ij + ∆ijα)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n.

The problem (4.13) is also a nonlinear. Therefore, to solve the IT2FLP problem
with vagueness in the TCs, the problem (4.13) for various α values in [0, 1] should
be solved. Finally, two values are obtained for each common α.
It is worth noting that the constraints in the problems (4.12) and (4.13) include
αxj product, thus, these problems are nonlinear. Therefore, the fuzzy decisive set
method (algorithm α) is used to solve these problems. The idea of the fuzzy decisive
set is based on the conception that the problems (4.12) and (4.13), turns into a
linear problem with a fixed value of α, respectively.
The alpha algorithm is as follows:

1. Put α = 1 and consider if the problem is feasible using the simplex method
or not. If so, insert α = 1; otherwise, suppose αL = 0 , αR = 1 , and go to
the next step.

2. Suppose that α = αL+αR

2 and update the values αL and αR . If the problem

is feasible for a new α, you can put αL = α . If not, insert αR = α.

As a result, for each α , examine whether the above problem is feasible or not and
the highest value of α∗ is true in the above-mentioned constraints.

Mode 2: Suppose ˜̃aij ∈
[
ā∨ij+a∨ij

2 ,
a∧ij+ā∧ij

2

]
and ∆ij ∈

[
∆ij , ∆̄ij

]
intervals for the up-

per and lower MFs. Then, this problem is displayed as an interval non-LP problem:

(4.14)

max α

s.t. α(zb − zw)−
n∑
j=1

cjxj + zw ≤ 0,

n∑
j=1

(
[
ā∨ij+a∨ij

2 ,
a∧ij+ā∧ij

2

]
+
[
∆ij , ∆̄ij

]
α)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,
12
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which, given interval programming, the best problem of the problem (4.14) is ex-
pressed as follows:

(4.15)

max α

s.t. α(zb − zw)−
n∑
j=1

cjxj + zw ≤ 0,

n∑
j=1

(
ā∨ij+a∨ij

2 + ∆ijα)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n.

The problem (4.15) is also a nonlinear. As a result, solving the IT2FLP problem
with vagueness in the TCs is sufficient to solve the problem (4.15) for α ∈ [0, 1].

4.2. The second new method. Consider the IT2FLP problem with vagueness in
the TCs:

(4.16)

max
n∑
j=1

cjxj

s.t.
n∑
j=1

˜̃aijxj ≤ bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

for j = 1, 2, ..., n, ˜̃aij are interval type-2 fuzzy TCs. As the MF of the constraints
(4.12), the problem (4.16) is considered as follows:

(4.17)

max
n∑
j=1

cjxj

s.t. µ ˜̃
iG
(x) ≥ α, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n.

which problem (4.17) is equivalent to:

(4.18)

max
n∑
j=1

cjxj

s.t.
n∑
j=1

(aij + ∆ijα)xj − bi ≤ 0, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,

for the upper and lower MFs, suppose that ˜̃aij ∈
[
ā∨ij+a∨ij

2 ,
a∧ij+ā∧ij

2

]
and ∆ij ∈[

∆ij , ∆̄ij

]
. Then the problem (4.18) is displayed as an interval non-LP problem:

(4.19)

max
n∑
j=1

cjxj

s.t.
n∑
j=1

(
[
ā∨ij+a∨ij

2 ,
a∧ij+ā∧ij

2

]
+
[
∆ij , ∆̄ij

]
α)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,
13
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According to the interval programming, the optimal problem of (4.19) is expressed
as follows:

(4.20)

max
n∑
j=1

cjxj

s.t.
n∑
j=1

(
ā∨ij+a∨ij

2 + ∆ijα)xj ≤ bi, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,

problem (4.20) is also a nonlinear. As a result, it is solved for α ∈ [0, 1] to solve the
IT2FLP problem with vagueness in the TCs.

Example 4.3. We have the following data for IT2FLP problem with vagueness in
the TCs:

ā∨ij =


2 1 4
7 1 6
1 3 1
0 4 4
2 3 8

, ā∧ij =


9 7 11
14 8 13
8 10 7
6 11 11
9 10 15

, a∨ij =


3 2 5
8 2 7
2 4 2
1 5 5
3 4 9

, a∧ij =


7 5 9
12 6 11
6 8 5
4 9 9
7 8 13

,

c =

 12
7
9

 , and b =


66
92
60
85

68.5

.

Solving the Example 4.3 using the first new method: As mentioned
in the solution method, first, for each ˜̃aij , the optimal objective function value
(z̄∨ij , z̄

∧
ij , z

∨
ij , z

∧
ij) are obtained, and then we have

zb = max{z̄∨ij , z̄∧ij , z∨ij , z∧ij} = max{239.9211, 94.8000, 179.8462, 79.0526} = 239.9211,
zw = min{z̄∨ij , z̄∧ij , z∨ij , z∧ij} = min{239.9211, 94.8000, 179.8462, 79.0526} = 79.0526,

by replacing the obtained values with other values in the problem (4.15), the follow-
ing nonlinear problem is obtained:

(4.21)

max α
s.t. − 12x1 − 7x2 − 9x3 + 160.8685α+ 79.0526 ≤ 0,

(2.5 + α)x1 + (1.5 + α)x2 + (4.5 + α)x3 − 66 ≤ 0,
(7.5 + α)x1 + (1.5 + α)x2 + (6.5 + α)x3 − 92 ≤ 0,
(1.5 + α)x1 + (3.5 + α)x2 + (1.5 + α)x3 − 60 ≤ 0,
(0.5 + α)x1 + (4.5 + α)x2 + (4.5 + α)x3 − 85 ≤ 0,
(2.5 + α)x1 + (3.5 + α)x2 + (5.5 + α)x3 − 68.5 ≤ 0,
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3,

using algorithm α: first, we put α = 1 and solve the problem (4.21) using the
simplex method. This problem has an infeasible solution, thus we put αL = 0 and

αR = 1, and α = αL+αR

2 = 0.5 is obtained according to the second step. The value
α = 0.5 is inserted and solved in the problem (4.21), and it is a feasible. Thus,

αL = 0.5 and αR = 1, and hence α = αL+αR

2 = 0.75 is obtained. By putting the
value α = 0.75 in the problem (4.21), it become infeasible.

14
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αL = 0.5 and αR = 0.75, and hence α = αL+αR

2 = 0.625 is obtained. By
putting the value α = 0.625 in the problem (4.21), it become infeasible. Therefore,
in the 15th iteration, α∗ = 0.5999 is the maximum value in which the constraints
satisfaction occurs. In addition, the optimal solutions are obtained as (x∗1, x

∗
2, x
∗
3) =

(8.7403, 10.0975, 0), and from the problem (4.1) the optimal value is obtained as
175.5661.

In this method, only one optimal value for α∗ is obtained, which is actually the
best value to satisfy the constraints. We put the values of the optimal solutions from
this method into the row of the main problem’s OFV. Then, we obtain the optimal
value of the OFV.

Solving the Example 4.3 using the second new method: Using the existing
data in the Example 4.3, the following problem is obtained.

(4.22)

max 12x1 + 7x2 + 9x3

s.t. (2.5 + α)x1 + (1.5 + α)x2 + (4.5 + α)x3 − 66 ≤ 0,
(7.5 + α)x1 + (1.5 + α)x2 + (6.5 + α)x3 − 92 ≤ 0,
(1.5 + α)x1 + (3.5 + α)x2 + (1.5 + α)x3 − 60 ≤ 0,
(0.5 + α)x1 + (4.5 + α)x2 + (4.5 + α)x3 − 85 ≤ 0,
(2.5 + α)x1 + (3.5 + α)x2 + (5.5 + α)x3 − 68.5 ≤ 0,
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3.

Table 3. Solution of the problem (4.22)

α ∈ [0, 1] x∗1 x∗2 x∗3 z∗

0 9.7444 12.6111 0 205.2111
0.1 9.5517 12.1293 0 199.5259
0.2 9.3703 11.6757 0 194.1736
0.3 9.1992 11.2480 0 189.1260
0.4 9.0375 10.8439 0 184.3577
0.5 0 9.4687 0 179.8462
0.6 8.7379 10.0993 0 175.5712
0.7 8.6022 9.7555 0 171.5146
0.8 8.4737 9.4211 0 167.6313
0.9 8.3590 9.0769 0 163.8462
1 8.4407 8.1017 0 158

For different values of α ∈ [0, 1], we can see in Table 3, as smaller α are chosen,
the values on the left side of the inequality become smaller; hence, a better optimal
objective is obtained. One of the advantages of this method is that for different values
of α ∈ [0, 1], the corresponding values for the optimal objective function and optimal
solutions are obtained. Therefore, the DM can choose one of the optimal solutions
according to the real conditions of the problem and what he/she is considering. This
feature is one of the advantages of the second proposed method.

15
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5. The IT2FLP problem with vagueness in the OFV and RsV

In this section, the IT2FLP problem with vagueness in the OFV and RsV is
introduced. The general form of this type of problem is as follows:

(5.1)

max
n∑
j=1

˜̃cjxj

s.t.
n∑
j=1

aijxj ≤ ˜̃
bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

where ˜̃cj , (j = 1, 2, · · · , n) and
˜̃
bi, (i = 1, 2, · · · ,m) are IT2FSs. The details of the

MFs of OFV and RsV are presented in the Section 3 and [15], respectively. In
the following, we propose three new methods for solving the IT2FLP problem with
vagueness in the OFV and RsV. The first two methods are proposed on the idea of
the Chandra and Aggarwal in solving the FLP problem [19].

5.1. The first new method. This method is based on Chandra and Aggarwal’s
idea for solving the IT2FLP problem with vagueness in the OFV and RsV and has
two phases [19]. In the first phase, the MF corresponding to IT2F constraints is
placed under the max-min operator and β is the maximum value of the satisfaction
degree of IT2F constraints, which is calculated as follows:

(5.2)
max β
s.t. β ≤ µ((Ax)i, u), i = 1, · · · ,m,

xj ≥ 0, β ∈ [0, 1] , j = 1, · · · , n,

the problem (5.2) corresponds with the following problem:

(5.3)
max β
s.t. (Ax)i ≤ bi + (1− α)∆i, i = 1, · · · ,m,

xj ≥ 0, β ∈ [0, 1] , j = 1, · · · , n,

by substituting the intervals
[
b∨i , b̄

∨
i

]
and

[
∆i, ∆̄i

]
with bi and ∆i, problem (5.3)

turns into an ILP problem:

(5.4)
max β
s.t. (Ax)i ≤

[
b∨i , b̄

∨
i

]
+ (1− β)

[
∆i, ∆̄i

]
, i = 1, · · · ,m,

xj ≥ 0, β ∈ [0, 1] , j = 1, · · · , n,

the best solution for the problem (5.4) is acquired by solving the following LP prob-
lem:

(5.5)
max β
s.t. (Ax)i + ∆iβ ≤ b̄∧i , i = 1, · · · ,m,

xj ≥ 0, β ∈ [0, 1] , j = 1, · · · , n,

suppose that (x̄, β̄) is the optimal solution of the problem (5.5). Therefore, x̄ is a β̄
-feasible solution for the IT2FLP problem. S(β̄) is the set of all β̄ -feasible solutions
of the main LP problem. Now, the problem (5.6) in the second phase is defined
to obtain the maximum MF of the IT2F objective function on S(β̄) feasible set as
follows:
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(5.6)

max α
s.t. cx ≥ [z∨0 , z̄

∧
0 ]− (1− α)

[
∆0, ∆̄0

]
(Ax)i ≤

[
b∨i , b̄

∨
i

]
+ (1− β̄)

[
∆i, ∆̄i

]
, i = 1, · · · ,m,

xj ≥ 0, α ∈ [0, 1] , j = 1, · · · , n,

the best solution of the problem (5.6) is obtained by solving the following problem:

(5.7)

max α
s.t. cx ≥ z∨0 − ∆̄0 + α∆0,

(Ax)i ≤ b̄∧i + ∆̄i − β̄∆i, i = 1, · · · ,m,
xj ≥ 0, α ∈ [0, 1] , j = 1, · · · , n,

that (x̂, α̂) is the optimal solution to the problem (5.7).

5.2. The second new method. In this method, a weight is assigned to each degree
of membership of the objective function and constraints. Then, by using it, we write
the new objective function and consider the constraints of this problem to be similar
to the constraints of problem (5.7). Therefore, we obtained the following problem:

(5.8)

max λα+ (1− λ)β
s.t. cx ≥ [z∨0 , z̄

∧
0 ]− (1− α)

[
∆0, ∆̄0

]
(Ax)i ≤

[
b∨i , b̄

∨
i

]
+ (1− β)

[
∆i, ∆̄i

]
, i = 1, · · · ,m,

xj ≥ 0, α, β, λ ∈ [0, 1] , j = 1, · · · , n,

where the best solution of the problem (5.8) is obtained by solving the following
problem:

(5.9)

max λα+ (1− λ)β
s.t. cx ≥ z∨0 − ∆̄0 + α∆0,

(Ax)i ≤ b̄∧i + ∆̄i − β∆i, i = 1, · · · ,m,
xj ≥ 0, α, β, λ ∈ [0, 1] , j = 1, · · · , n.

5.3. The third new method. The Section 3 related to MFs of OFV and Ref.
[15] of the RsV are placed in the problem, and finally, the following problem with
vagueness in OFV and RsV is obtained:

(5.10)

max
n∑
j=1

(c∨j + α(c∧j − c∨j ))xj

s.t.
n∑
j=1

aijxj ≤ b̄∧i − α∆i, i = 1, · · · ,m,

xj ≥ 0, α ∈ [0, 1] , j = 1, · · · , n.

The problem (5.10) is a nonlinear. The results are obtained by allocating various
values in α ∈ [0, 1].

Example 5.1. Consider the TCs and OFV data from Example 3.1, and the fol-
lowing RsV data for the IT2FLP problem with vagueness in the OFV and RsV:
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b∨ =


50
70
40
60
40

 , b∧ =


72
104
65
95
80

 , b̄∧ =


95
110
77
102
98

 , b̄∨ =


60
80
55
75
57

.

Solving the Example 5.1 using the first new method: For the first phase,
the following LP problem is obtained.

(5.11)

max β
s.t. 5x1 + 3x2 + 7x3 + 10β ≤ 95,

10x1 + 4x2 + 9x3 + 10β ≤ 110,
4x1 + 6x2 + 3x3 + 15β ≤ 77,
2x1 + 7x2 + 7x3 + 15β ≤ 102,
5x1 + 6x2 + 11x3 + 17β ≤ 98,
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3,

by solving the problem (5.11) the value of β̄ = 1 obtained. Now, we go to the second
phase. The value β̄ = 1 is placed in the problem (5.7), and we have

(5.12)

max α
s.t. − 12x1 − 7x2 − 9x3 + 60.0749α+ 119.7713 ≤ 0,

5x1 + 3x2 + 7x3 ≤ 95,
10x1 + 4x2 + 9x3 ≤ 110,
4x1 + 6x2 + 3x3 ≤ 77,
2x1 + 7x2 + 7x3 ≤ 102,
5x1 + 6x2 + 11x3 ≤ 98,
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3,

then α̂ = 0.4782 and x̂j = (x̂1, x̂2, x̂3) = (8, 7.5, 0) are obtained as the best solu-
tions of the problem (5.7). In the first phase, we calculate the maximum degree of
satisfaction of the constraints once, and in the second step, we replace this value
in the constraints. The problem in the second phase, which has the highest degree
of satisfaction with the constraints, is solved by calculating the maximum degree of
the constraints’ satisfaction of the problem and constraint related to the objective
function.

Solving the Example 5.1 using the second new method: Consider the
data mentioned in the Example 5.1 at the problem (5.9), then we have

(5.13)

max λα+ (1− λ)β
s.t. − 12x1 − 7x2 − 9x3 + 60.0749α+ 119.7713 ≤ 0,

5x1 + 3x2 + 7x3 + 10β ≤ 105,
10x1 + 4x2 + 9x3 + 10β ≤ 120,
4x1 + 6x2 + 3x3 + 15β ≤ 92,
2x1 + 7x2 + 7x3 + 15β ≤ 117,
5x1 + 6x2 + 11x3 + 17β ≤ 115,
α, β ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3.

The following results were obtained by assigning various weighting values to λ ∈ [0, 1]
in the problem (5.13), (see the Table 4). It can be seen that for λ = 0.1 until λ = 0.7,
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Table 4. Solution of the problem (5.13)

λ ∈ [0, 1] x∗1 x∗2 x∗3 α∗ β∗ z∗

0 0 0 0 0 1 1
0.1 8 7.5 0 0.4782 1 0.9478
0.2 8 7.5 0 0.4782 1 0.8956
0.3 8 7.5 0 0.4782 1 0.8435
0.4 8 7.5 0 0.4782 1 0.7913
0.5 8 7.5 0 0.4782 1 0.7391
0.6 8 7.5 0 0.4782 1 0.6869
0.7 8 7.5 0 0.4782 1 0.6348
0.8 8 10 0 0.7695 0 0.6156
0.9 8 10 0 0.7695 0 0.6926
1 8 10 0 0.7695 0 0.7695

we obtained x∗j = (x∗1, x
∗
2, x
∗
3) = (8, 7.5, 0), α∗ = 0.4782, and β∗ = 1. These values

are the same as the values obtained in the example of the first new method.

Solving the Example 5.1 using the third new method:
Consider the data mentioned in the Example 5.1 for IT2FLP problem with vague-

ness in the OFV and RsV as follows:

(5.14)

max (8 + 7α)x1 + (13 + 9α)x2 + (5 + 8α)x3

s.t. 5x1 + 3x2 + 7x3 + 10α ≤ 95,
10x1 + 4x2 + 9x3 + 10α ≤ 110,
4x1 + 6x2 + 3x3 + 15α ≤ 77,
2x1 + 7x2 + 7x3 + 15α ≤ 102,
5x1 + 6x2 + 11x3 + 17α ≤ 98,
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3,

for α ∈ [0, 1], we solved problem (5.14) and the obtained results are shown in Table
5: The maximum objective function was obtained in α = 1, as expected, given

Table 5. Solution of the problem (5.14)

α ∈ [0, 1] x∗1 x∗2 x∗3 z∗

0 0 12.8333 0 166.8333
0.1 0 12.5833 0 174.9083
0.2 0 12.3333 0 182.5333
0.3 0 12.0833 0 189.7083
0.4 0 11.8333 0 196.4333
0.5 0 10.3333 2.5000 203.3333
0.6 0 10.0958 2.4750 210.0183
0.7 0 9.8583 2.4500 216.2358
0.8 0 9.6208 2.4250 221.9858
0.9 6.4826 5.4668 1.5897 227.4439
1 6.4774 5.0032 1.6903 229.2065
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the objective function maximization and the constraints being less or equal. Also,
the DM can choose one of the α values and the corresponding optimal value and
solutions according to the existing conditions of the real problem.

6. The IT2FLP problem with vagueness in RsV and TCs

This subsection deals with the IT2FLP problem with the following vagueness
constraints.

(6.1)

max
n∑
j=1

cjxj

s.t.
n∑
j=1

˜̃aijxj ≤ ˜̃
bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

where (for i = 1, 2, · · · ,m and j = 1, 2, · · · , n), ˜̃aij and
˜̃
bi are IT2FSs. By applying

α-cut on IT2FSs and obtaining the left and right bounds, as expressed in ILP prob-
lems, the best objective function on the largest feasible area and the worst objective
function value on the smallest feasible area are defined. To solve the problem (6.1),
four ILP problems or equivalently eight LP problems are required.

Theorem 6.1 ([30]). For each i = 1, ...,m, the interval inequality
n∑
j=1

[
α¯̃̃a∨ij

, α˜̃a
∨
ij

]
xj ≤[

α¯̃̃
b∨i
, α¯̃̃

b∧i

]
and the interval inequality

n∑
j=1

[
α˜̃a

∧
ij
, α¯̃̃a∧ij

]
xj ≤

[
α˜̃
b
∨
i

, α˜̃
b
∧
i

]
are the biggest

and smallest feasible areas, respectively.

Theorem 6.2 ([30]). For each i = 1, · · · ,m , the biggest and smallest feasible areas

are equal to
n∑
j=1

α˜̃a
∧
ij
xj ≤ α¯̃̃

b∧i
and

n∑
j=1

α¯̃̃a∧ij
xj ≤ α˜̃

b
∧
i

, respectively.

Theorem 6.3 ([30]). For each α-cut, the UMF of the objective function is obtained
from solving the LP problem of the best objective function value zαb and the worst
objective function value zαw:

(6.2)

zαb : max
n∑
j=1

cjxj

s.t.
n∑
j=1

α¯̃̃a∨ij
xj ≤ α¯̃̃

b∧i
, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,
and

(6.3)

zαw : max
n∑
j=1

cjxj

s.t.
n∑
j=1

α¯̃̃a∧ij
xj ≤ α˜̃

b
∨
i

, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n.

In the next subsection, a new solution method is suggested for the IT2FLP prob-
lem with vagueness in the TCs and RsV using the Farhadinia’s method idea [20].
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6.1. The new solving method. In this subsection, the asymmetrical problem (6.1)
changes to the symmetrical problem using the max-min operator. In this method,
using the idea of Farhadinia’s method for solving FLP problems with vagueness in
the RsV and TCs [20], we proposed a new method for solving IT2FLP problems with
vagueness in the RsV and TCs. Farhadinia presented a formula for fuzzy constraints
MF given the note in the fuzzy concept.
Note: An appropriate fuzzy MF is zero if the constraints are strongly rejected in
the finite mode; otherwise, it is one. In addition, it should uniformly increase from
zero to one.
According to Farhadinia’s idea, the following modes hold for the constraints of the
problem:

n∑
j=1

(aij + ∆ij)xj 6 bi, i = 1, · · · ,m,

n∑
j=1

aijxj −∆i 6 bi, i = 1, · · · ,m,

n∑
j=1

(aij + ∆ij)xj −∆i 6 bi, i = 1, · · · ,m,

n∑
j=1

aijxj 6 bi, i = 1, · · · ,m.

For any x = (xj)1×n, define the followings:

bmax
i (x) = max

{
n∑
j=1

(aij + ∆ij)xj ,
n∑
j=1

aijxj −∆i

,
n∑
j=1

(aij + ∆ij)xj −∆i,
n∑
j=1

aijxj

}
,

bmin
i (x) = min

{
n∑
j=1

(aij + ∆ij)xj ,
n∑
j=1

aijxj −∆i,

,
n∑
j=1

(aij + ∆ij)xj −∆i,
n∑
j=1

aijxj

}
.

Then considering the above note, the FS of the ith constraint is shown as below:

µ ˜̃Gi
(x) =

 1, bi > bmax
i ,

∈ [0, 1] , bmin
i 6 bi 6 bmax

i ,
0, bi 6 bmin

i ,

for each x > 0

bmax
i (x) =

n∑
j=1

(aij + ∆ij)xj ,

bmin
i (x) =

n∑
j=1

aijxj −∆i.

Thus the MF of the problem’s constraints can be expressed as below:
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(6.4) µ ˜̃Gi
(x) =



1, bi ≥
n∑
j=1

(aij + ∆ij)xj ,

bi−
n∑

j=1
aijxj+∆i

n∑
j=1

∆ijxj+∆i

,
n∑
j=1

aijxj −∆i ≤ bi ≤
n∑
j=1

(aij + ∆ij)xj ,

0, bi ≤
n∑
j=1

aijxj −∆i.

However, to symmetrical it, the problem is solved for bmax
i and bmin

i , and two
values are obtained for the objective function, which are displayed as zαb and zαw,
respectively. Using max-min operator, we have

(6.5)

max α

s.t. α(zαb − zαw)−
n∑
j=1

cjxj + zαw ≤ 0,

n∑
j=1

(aij + ∆ijα)xj + ∆iα−∆i − bi ≤ 0, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,

since the TCs and RsV have upper and lower MFs, as mentioned in the Section 4

and Ref. [15], the mean upper and lower MFs for the TCs, ˜̃aij ∈
[
ā∨ij+a∨ij

2 ,
a∧ij+ā∧ij

2

]
and ∆ij ∈

[
∆ij , ∆̄ij

]
, for the RsV

˜̃
bi ∈

[
b∨i , b̄

∨
i

]
and ∆i ∈

[
∆i, ∆̄i

]
are considered,

respectively. Thus, the problem (6.6) changes to an interval nonlinear problem as
follows:

(6.6)

max α

s.t. α(zαb − zαw)−
n∑
j=1

cjxj + zαw ≤ 0,

n∑
j=1

(
[
ā∨ij+a∨ij

2 ,
a∧ij+ā∧ij

2

]
+
[
∆ij , ∆̄ij

]
α)xj +

[
∆i, ∆̄i

]
α−

[
∆i, ∆̄i

]
−
[
b∨i , b̄

∨
i

]
≤ 0, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,

based on interval programming problem, the best problem of (6.6) given the maxi-
mization of objective function and equal or less constraints is as follows:

(6.7)

max α

s.t. α(zαb − zαw)−
n∑
j=1

cjxj + zαw ≤ 0,

n∑
j=1

(
ā∨ij+a∨ij

2 + ∆ijα)xj + ∆iα− ∆̄i − b̄∧i ≤ 0, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,

the problem (6.7) is nonlinear and we can solve it using the α algorithm.
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Example 6.4. Consider the TCs and the OFV data from Example 4.3, and RsV
data from Example 5.1. At first, by using the problems (6.2) and (6.3), we have

zαb : max 12x1 + 7x2 + 9x3

s.t. 3x1 + 2x2 + 5x3 6 50,

8x1 + 2x2 + 7x3 6 70,

2x1 + 4x2 + 2x3 6 40,

x1 + 5x2 + 5x3 6 60,

3x1 + 4x2 + 9x3 6 40,

xj > 0, j = 1, 2, 3,

and

zαw : max 12x1 + 7x2 + 9x3

s.t. 2x1 + x2 + 4x3 6 95,

7x1 + x2 + 6x3 6 110,

x1 + 3x2 + x3 6 77,

4x2 + 4x3 6 102,

2x1 + 3x2 + 8x3 6 98,

xj > 0, j = 1, 2, 3,

we calculate the values of zαb = 301.9500 and zαw = 68.5714, respectively. Then by
putting data in problem (6.7), we obtain a nonlinear problem as follows:

(6.8)

max α
s.t. − 12x1 − 7x2 − 9x3 + 233.3786α+ 68.57140 ≤ 0,

(2.5 + α)x1 + (1.5 + α)x2 + (4.5 + α)x3 ≤ 95 + 10(1− α),
(7.5 + α)x1 + (1.5 + α)x2 + (6.5 + α)x3 ≤ 110 + 10(1− α),
(1.5 + α)x1 + (3.5 + α)x2 + (1.5 + α)x3 ≤ 77 + 15(1− α),
(0.5 + α)x1 + (4.5 + α)x2 + (4.5 + α)x3 ≤ 102 + 15(1− α),
(2.5 + α)x1 + (3.5 + α)x2 + (8.5 + α)x3 ≤ 98 + 17(1− α),
α ∈ [0, 1] , xj ≥ 0, j = 1, 2, 3,

since the problem (6.8) is a a nonlinear, we use an algorithm α to solve it. First,
we put α = 1 and solve problem using simplex. This is an infeasible problem, thus

αL = 0, αR = 1, and based on the second step, α = αL+αR

2 = 0.5 is obtained.
We put and solve α = 0.5 value in the last problem. The above problem is feasible

per α = 0.5. Thus, αL = 0.5 and αR = 1, and thereby α = αL+αR

2 = 0.75. By

inserting the value α = 0.75 in the problem, it becomes infeasible. Then, αL = 0.5 ,

αR = 0.75 , and as a result α = αL+αR

2 = 0.625 . By placing the value α = 0.625 in
the problem, it becomes feasible. Consequently, in the 13th iteration, the maximum
constraints satisfaction value has occurred in α∗ = 0.6589. In addition, the optimal
solutions are obtained as (x∗1, x

∗
2, x
∗
3) = (10.0578, 14.5216, 0), and from the problem

(6.1) the optimal value is obtained as 222.3448.
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7. The IT2FLP problem with vagueness in OFV, RsV and TCs

The IT2FLP problem with vagueness in OFV, RsV and TCs is as follows:

(7.1)

max
n∑
j=1

˜̃cjxj

s.t.
n∑
j=1

˜̃aijxj ≤ ˜̃
bi, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n,

where ˜̃cj , ˜̃aij and
˜̃
bi are IT2FSs. They represent the interval type-2 fuzzy of the

OFV, TCs and RsV with an impression of vagueness type, respectively. Then the
MF of such problems is introduced and a new solving method is suggested.

By applying α-cut on IT2FSs, the left and right bounds are obtained from the
ILP problems. To solve problem (7.1), we need eight ILP equivalents for sixteen
LP problems. Using the Theorem 7.1, we show that the MF of the problem (7.1)
can be obtained only by solving two-LP problems related to each α-cut. Given the
Theorem 6.1 and ILP problems, obtaining the objective function in the largest and
smallest feasible area is required to calculate the best and worst objective function
values. Therefore, instead of eight ILP problems related to each α-cut, the MF of
the objective function can be obtained only by solving two ILP problems:

max
n∑
j=1

[
α¯̃̃c∨j

, α¯̃̃c∧j

]
xj

s.t.
n∑
j=1

[
α˜̃a

∧
ij
, α˜̃a

∨
ij

]
xj ≤

[
α¯̃̃
b∨i
, α¯̃̃

b∧i

]
, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n.
and

max
n∑
j=1

[
α˜̃c

∧
j
, α˜̃c

∨
j

]
xj

s.t.
n∑
j=1

[
α¯̃̃a∨ij

, α¯̃̃a∧ij

]
xj ≤

[
α˜̃
b
∧
i

, α˜̃
b
∨
i

]
, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n.

Theorem 7.1 ([30]). For each α-cut, the UMF of the objective function is obtained
by solving two LP problems:

(7.2)

zαb : max
n∑
j=1

α¯̃̃c∧j
xj

s.t.
n∑
j=1

α˜̃a
∧
ij
xj ≤ α¯̃̃

b∧i
, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n.
and

(7.3)

zαw : max
n∑
j=1

α˜̃c
∧
j
xj

s.t.
n∑
j=1

α¯̃̃a∧ij
xj ≤ α˜̃

b
∧
i

, i = 1, · · · ,m,

xj ≥ 0, j = 1, · · · , n.
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which the problems (7.2) and (7.3) are the best and worst LP problems, respectively.

7.1. The new solving method. In this subsection, a new method for solving such
problems is proposed by integrating the methods applied in the preceding sections.
Based on the Section 6.1 for constraint MFs (the Eq. (6.4)), the materials related
to Section 3 and Section 7, as well as all the rules used in interval programming,
the following problem can be used to solve the IT2FLP problem with vagueness in
OFV, TCs, and RsV:

(7.4)

max
n∑
j=1

(c∨i + α(c∧i − c∨i ))xj

s.t.
n∑
j=1

(
ā∨ij+a∨ij

2 + ∆ijα)xj + ∆iα− ∆̄i − b̄∧i ≤ 0, i = 1, · · · ,m,

α ∈ [0, 1] , xj ≥ 0, j = 1, · · · , n,
the problem (7.4) is a nonlinear, and an arbitrary value to α ∈ [0, 1] is assigned to
solve it.

Example 7.2. For the IT2FLP problem with vagueness in OFV, TCs, and RsV,
we consider the OFV data from Example 3.1, the TCs data from Example 4.3 and
the RsV data from Example 5.1. By placing the above data in the non-LP problem
(7.4), we have

(7.5)

max (8 + 7α)x1 + (13 + 9α)x2 + (5 + 8α)x3

s.t. (2.5 + α)x1 + (1.5 + α)x2 + (4.5 + α)x3 6 95 + 10(1− α),
(7.5 + α)x1 + (1.5 + α)x2 + (6.5 + α)x3 6 110 + 10(1− α),
(1.5 + α)x1 + (3.5 + α)x2 + (1.5 + α)x3 6 77 + 15(1− α),
(0.5 + α)x1 + (4.5 + α)x2 + (4.5 + α)x3 6 102 + 15(1− α),
(2.5 + α)x1 + (3.5 + α)x2 + (8.5 + α)x3 6 98 + 15(1− α),
α ∈ [0, 1] , xj > 0, j = 1, 2, 3,

by solving the problem (7.5), the results are showed in Table 6. Obviously, we

Table 6. Solution of the problem (7.5)

α ∈ [0, 1] x∗1 x∗2 x∗3 z∗

0 11.7500 21.2500 0 370.2500
0.1 11.43556 16.1048 0 378.2734
0.2 11.1445 18.9336 0 384.9758
0.3 10.8750 17.8750 0 390.4750
0.4 10.6250 16.8750 0 394.8750
0.5 10.3929 15.9286 0 398.2679
0.6 10.1771 15.0313 0 400.7354
0.7 9.9764 14.1791 0 402.3507
0.8 9.7895 13.3684 0 403.1789
0.9 9.6154 12.5962 0 403.2788
1 9.4531 11.8594 0 402.7031

find that by increasing the α value, the obtained objective function values increase.
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The advantages of this method include its simplicity and lack of computational com-
plexity. Also, corresponding to each alpha value, the optimal value of the objective
function and optimal solutions are obtained. In addition, the DM can choose one
of the α values and the corresponding optimal solutions according to the existing
conditions.

8. Conclusion

This study presents the basic concepts related to the IT2FLP problem with vague-
ness in OFV, TCs, RsV, or any possible combination. In these types of problems,
the input data are modeled using fuzzy preference-based MFs. Some ideas have been
used to solve FLP problems, and we have proposed new methods to solve IT2FLP
problems. Among the possible modes created based on the position of vagueness
in the problem, IT2FLP problem with vagueness in OFV, IT2FLP problem with
vagueness in the TCs, IT2FLP problem with vagueness in OFV and RsV, IT2FLP
problem with vagueness in OFV and TCs, and finally IT2FLP problem with vague-
ness in OFV, RsV, and TCs can be mentioned. For each problem mentioned above,
we presented the new solution method(s), and some examples are provided for a
better understanding. In summary, the benefits of this research can be described as
follows:

• There are not enough studies on IT2FLP problems with vagueness in coef-
ficients.
• Solving IT2FLP problems with uncertainty by using and expanding the ideas

used to solve FLP problems.
• The proposed method(s) involves simple steps and does not require extensive

computational complexity.
• We solved the problems for different α values (α ∈ [0, 1]) in most of our

proposed methods. One of the advantages of these methods is that they
provide the DM with a set of optimal solutions and the optimal value of the
objective function for different α values. Therefore, the DM can choose a
solution according to the real conditions of the problem.
• Our proposed methods are flexible and interpretable because the Bellman-

Zadeh operator is used to find a crisp solution to the IT2FL problem. Then
they are appropriate for numerous similar problems.

In future work, other existing methods for solving FLP problems could be gen-
eralized to solve IT2FLP problems with the imprecision of vagueness type. Our
proposed methods could be extended to various real-life decision-making problems
such as [31], [32] and [33]. In addition, given that several types of cuts are available
for alpha, they could be evaluated to solve these types of problems.
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